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Abstract

Single-cell RNA sequencing (scRNA-seq) enables the exploration of cellular heterogeneity by analyzing gene expression profiles in
complex tissues. However, scRNA-seq data often suffer from technical noise, dropout events and sparsity, hindering downstream
analyses. Although existing works attempt to mitigate these issues by utilizing graph structures for data denoising, they involve the risk
of propagating noise and fall short of fully leveraging the inherent data relationships, relying mainly on one of cell–cell or gene–gene
associations and graphs constructed by initial noisy data. To this end, this study presents single-cell bilevel feature propagation (scBFP),
two-step graph-based feature propagation method. It initially imputes zero values using non-zero values, ensuring that the imputation
process does not affect the non-zero values due to dropout. Subsequently, it denoises the entire dataset by leveraging gene–gene and
cell–cell relationships in the respective steps. Extensive experimental results on scRNA-seq data demonstrate the effectiveness of scBFP
in various downstream tasks, uncovering valuable biological insights.
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INTRODUCTION
Single-cell RNA sequencing (scRNA-seq) has ushered in a transfor-
mative approach to gene expression analysis, enabling unprece-
dented resolution at the single-cell level. This technology has
paved the way for groundbreaking discoveries, from the identifica-
tion of novel cell types [1, 2] and the detection of marker genes [3]
to the intricate analysis of cellular trajectories [4]. Yet, the analysis
of scRNA-seq data can pose significant challenges owing to the
inherent noise in the observed values caused by various factors
like amplification bias and cell cycle effects [5]. Furthermore, due
to the low RNA capture rate, unobserved values (i.e. zero values)
encompass both true biological absence and technical omissions,
the latter often termed as dropout. Such dropout phenomena
compromise the performance of downstream analyses, particu-
larly in cell clustering, thereby skewing biological interpretations.

In addressing the above challenges, contemporary imputation
techniques for scRNA-seq data can be broadly categorized into
‘non-graph-based methods’ and ‘graph-based methods’. Within
the realm of non-graph-based methods, notable contributions
include SAVER [6], scImpute [7] and DCA [8]. These methods
predominantly impute zeroes by drawing assistance from other
genes or cells through either the statistical strategies [6, 7] or the
autoencoder framework [8]. Nevertheless, these techniques often
do not fully harness the underlying relationships among genes or
cells, thereby missing out on potentially valuable insights from
their proximate counterparts.

Building upon this foundation, graph-based techniques have
been favored due to their proficiency in encapsulating the uti-
lization of relationships. Prototypical methods in this category
encompass MAGIC [9], scGNN [10] and scGCL [11]. They employ
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a graph-diffusion or message-passing scheme upon a cell graph,
rooted in the premise that adjacent cells in the graph share
similar underlying biological characteristics. However, a notable
limitation remains, which involves the risk of propagating noise
when diffusing zero values that might potentially be attributed
to dropout phenomena. As this unintended noise propagation
can blur biologically meaningful values, a meticulous imputa-
tion process must be carried out prior to the diffusion of zero
values.

Moreover, current graph-based methods do not fully harness
the relationship information embedded within scRNA-seq data.
One noteworthy limitation is that these methods prioritize
either cell–cell or gene–gene relationships, often neglecting the
significance of the other. For instance, MAGIC, scGNN and scGCL
emphasize intercellular relationships through their utilization of
cell–cell graphs, and GraphSCI [12] concentrates on gene–gene
relationships, missing opportunities to harness the relationships
of genes and cells, respectively. A further limitation is that these
methods solely rely on graph structures derived from initial
sparse and potentially noisy raw data, neglecting enhancements
during the imputation phase. We argue that this reliance on
initial graph structure leads to sub-optimal results, as leveraging
the imputed matrix can lead to enhanced graph structure, and
conversely, an enhanced graph structure can contribute to better
imputation outcomes.

Driven by these motivations, we introduce the single-cell bi-
level feature propagation (scBFP). This is a novel framework that
sequentially imputes zero values and denoises the entire counts
in scRNA-seq datasets through an enhanced graph structure.
Specifically, as depicted in Figure 1, scBFP first crafts a gene–gene
interaction graph rooted in the raw count matrix and applies
Feature Propagation [13, 14] to generate a ‘warmed-up’ matrix
leveraging the gene–gene relationships. It is worth noting that
scBFP addresses the dropout phenomena while maintaining non-
zero values as their initial state during each iteration with simple
replacement operation after propagation, thus preventing the
possibility of noise diffusion from dropout events. Following this,
scBFP constructs a graph in a cell perspective based on this
‘warmed-up’ matrix to obtain the enhanced graph structure.
Finally, the imputed matrix is obtained by denoising the entire
matrix, leveraging the diffusion process on this cell–cell graph.
Through extensive experiments and comparisons with existing
state-of-the-art imputation tools, we demonstrate that scBFP con-
sistently delivers superior performance on various downstream
tasks.

METHODS
The procedure of scBFP
In the quest to sequentially impute and denoise the cell–gene
count matrix, scBFP employs feature propagation (FP) [13], a
technique that preserves observed values (i.e. non-zeros) while
imputing missing ones (i.e. zeros) through neighboring influences
over iterative steps. Commencing with the initial gene–cell matrix
X ∈ R

G×C, where G and C represent the total number of genes
and cells, respectively, and a cosine-similarity-based k-nearest-
neighbor gene–gene graph Ggene, the aim of FP is to minimize the
Dirichlet Energy across the cell expression of genes: �(X,Ggene) =∑C

c=1
1
2 X�·,c�X·,c, with � ∈ R

G×G = I − Ãgene(Ãgene = D−1/2AgeneD−1/2)

representing the graph Laplacian matrix comprising a symmet-
rically normalized adjacency matrix Ãgene and a degree matrix D
with self-loops. This optimization essentially seeks to minimize
differences between the features of interconnected genes.

The derivative of X for the heat diffusion equation at time step
t is thus defined as: Ẋ(t) = −∇�(X(t)) = −�X(t), governed by
the initial condition (IC): X(0) = [XN , XZ (0)]� and the boundary
condition (BC): XN (t) = XN , where subscripts N and Z designate
the indices sets for non-zeros and zeros, respectively. The solu-
tion to this linear heat equation yields a closed-form solution,
Xz = −�−1

zz ��
nzXn, which induces a complexity of O(|Vz|3), a cubic

complexity of number of zero rows for solving linear equations—
impractical for large graphs. Therefore, we resort to the iterative
Euler scheme as follows:

X(i+1) = X(i) − h

[
0 0

�zn �zz

]
X(i)

=
[

I 0
−h�zn I − h�zz

]
X(i)

(1)

where X(i) represents the imputed gene-cell matrix at the i-th iter-
ation, and h signifies the step size within an iterative numerical
scheme. Specifically, when h = 1 and the graph Laplacian matrix is
denoted by a normalized adjacency matrix, the iteration formula
simplifies as follows:

X(i+1) =
[

I 0
Ãgene

zn Ãgene
zz

]
X(i) (2)

With this equation, implementation is straightforward, involving
the multiplication of the normalized adjacency matrix followed
by the replacement of non-zero indices. After I iterations, we
acquire a ‘warmed-up’ gene–cell matrix X(I) in which the initially
zero indices have been imputed based on gene–gene relation-
ships. This matrix, regarded as an enhanced resource for cell-
wise graph structure, is then transposed to shift focus to the
cellular perspective, yielding a cell–gene matrix, X′ ∈ R

C×G = X(I)�.
Subsequently, we generate a cosine-similarity-based k-nearest-
neighbor cell–cell graph,Gcell, and conduct the final diffusion step
as follows:

X′(j+1) = ÃcellX′(j) (3)

where X′(j) represents the denoised cell-gene matrix at iteration j,
and Ãcell ∈ R

C×C = D−1Acell is the random-walk based normalized
(Here, compared to the gene–gene adjacency matrix, we employ a
random-walk based normalization as spreading information from
a high degree node to its neighbors is crucial. This is particularly
significant for cells with sparsely captured gene expression, which
can be enriched through the information from their high-degree
neighboring cells.) cell–cell adjacency matrix. This cell-wise diffu-
sion process not only imputes zero values in the initial matrix but
also denoises non-zero values through neighboring cells, thereby
fostering smoothness among similar cells. Following J iterations,
we ultimately obtain X̂ ∈ R

C×G = X′(J) as the final denoised matrix,
poised for use in subsequent downstream tasks. The algorithm for
scBFP can be found in Algorithm 1.

The convergence property of scBFP
In our approach, we leverage the convergence property of imputed
values facilitated by feature propagation. This aspect is crucial
as it provides deeper insights into the variation and stabilization
of imputed values across iterations, as delineated in Equation 2.
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Figure 1. The overall framework of scBFP. Given an initial gene–cell count matrix, scBFP first conducts Gene-wise Feature Propagation on a gene–gene
graph derived from this matrix, yielding a warmed-up matrix. Subsequently, using this warmed-up matrix, we derive an enhanced cell–cell graph and
carry out diffusion to obtain the final imputed matrix.

Algorithm 1 single-cell scBFP

1: Input: Gene–Cell Matrix X
2: Output: Denoised Cell–Gene Matrix X̂
3: Ãgene = kNN(X) � Gene–Gene Graph Construction
4: Y ← X
5: while X has not converged do
6: X ← ÃgeneX
7: XN ← YN � Gene-wise Feature Propagation
8: end while
9: X

′ ← X(I)�
10: Ãcell = kNN(X

′
) � Cell–Cell Graph Construction

11: while X
′

has not converged do

12: X
′ ← ÃcellX

′ � Cell-wise Diffusion
13: end while

14: X̂ ← X
′ (J)

We examine the convergence property from two distinct per-
spectives: the output of gene-wise feature propagation and cell-
wise diffusion. These perspectives are integral to the sequential
procedure of scBFP, aligning closely with its overall methodol-
ogy. Given a gene-cell matrix, we begin with gene-wise feature
propagation.

Convergence of gene-wise feature propagation
Proposition 1. (The output of Gene-wise Feature

Propagation converges.) Take a symmetrically
normalized adjacency matrix, i.e. D−1/2AgeneD−1/2, a
strongly connected gene–gene graph Ãgene ∈ R

G×G with
the gene-cell matrix X ∈ R

G×C, and x ∈ R
G be the gene

vector. With n, z being the index of nodes with non-zero
values and zero values (|n| + |z| = G), respectively, define
recursive iteration while i ranging [1, ∞) as

x(i) =
[

I 0
Ãgene

zn Ãgene
zz

]
x(i−1)

Then, this iteration converges with a steady state,

lim
i→∞

x(i) =
[

xn

xz

]
=

[
xn

−�−1
zz Ãgene

zn xn

]

Proof. The iterative Euler scheme, which propagates features
while maintaining initial states for the non-zero values in the
gene-cell matrix, can be expressed as

[
x(i)

n

x(i)
z

]
=

[
I|n| 0nz

Ãgene
zn Ãgene

zz

] [
x(i−1)

n

x(i−1)
z

]

=
[

x(i−1)
n

Ãgene
nz x(i−1)

n + Ãgene
zz x(i−1)

z

]

Here, the first |n| rows maintain their initial states from identity
matrix I, x(i)

n = x(i−1)
n = xn. This leaves only the rows with initially

zero values,

x(i)
z = Ãgene

zn xn + Ãgene
zz x(i−1)

z

By unrolling this recursion and taking the limit to evaluate the
steady state,

lim
i→∞

x(i)
z = lim

i→∞
(Ãgene

zz )ix(0)
z + (

i∑
j=1

Ãgene(j−1)

zz )Ãgene
zn xn

In this context, when considering Ãgene
zz as the bottom right sub-

matrix of Ãgene, its spectral radius becomes less than 1, in accor-
dance with Lemma A.1 of [13], which results limi→∞(Ãgene

zz )ix(0)
z

approaches 0. Also, since its eigenvalue is not 1, the eigenvalue
of Iz − Ãgene

zz becomes non-zero, which becomes invertible. Finally,
using the geometric series, the converged value of nodes with
initially zero values in the gene-cell matrix can be obtained as

lim
i→∞

x(i)
z =

(
Iz − Ãgene

zz

)−1
Ãgene

zn xn = −�−1
zz Ãgene

zn xn

�
A critical insight from Proposition 1 is the mechanism through
which the steady state of imputed values (i.e. xz) is achieved.
This state is reached predominantly through the influence of
non-zero values (i.e. xn), while the non-zero values themselves
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retain their initial state, unaffected by the zero values and thus
preserving their original scale. Given that edges of genes are
formed based on the similarity of their neighboring representa-
tions, it follows logically that the imputation of zero gene val-
ues occurs through their closely related neighbor genes. This
underscores the intuitive and methodologically sound basis of our
approach. Next, we show the convergence property of cell-wise
diffusion.

Convergence of cell-wise diffusion
Proposition 2. (Likely Convergence of Cell-wise Diffusion

output.) Take a random-walk-based normalized
adjacency matrix, i.e. D−1Acell, a strongly connected
cell–cell graph Ãcell ∈ R

C×C with the cell-gene matrix
X′ ∈ R

C×G, and x′ ∈ R
C be the cell vector. Define recursive

iteration while j ranging [1, ∞) as

x(j) = Ãcellx(j−1)

Then, under typical conditions, this iteration is likely to
converge to a stationary distribution π , satisfying

π = Ãcellπ

Proof. Given that the cell–cell graph is strongly connected, it
inherently possesses the property of irreducibility. This implies
that it is possible to traverse from any node to any other node
within the graph. Additionally, the graph exhibits ergodic char-
acteristics, suggesting that the system represented by the matrix
will not become confined to a subset of states but can eventually
reach any state.
The convergence to a stationary distribution is generally expected
when the largest eigenvalue of the transition matrix Ãcell is 1,
and all other eigenvalues are ¡1 in absolute value. In many cases,
especially in strongly connected graphs, the largest eigenvalue is
typically 1, which supports the likelihood of convergence. This
convergence property can often be empirically observed through
stable performance across iterations. �

In this study, we empirically observed that strong connectivity can
be achieved with a sufficiently large value of k, typically exceeding
10. In summary, by understanding the convergence properties of
both gene-wise feature propagation and cell-wise diffusion, we
can leverage these characteristics to enhance the interpretability
of the imputation process mechanism.

Reproducibility of scBFP
In this study, the parameters of scBFP are set to the default
parameter settings for all experiments, considering the unsu-
pervised nature of the single-cell analysis. Detailed information
regarding parameter and device configurations is provided in
Supplementary Notes 1.1. For fair comparisons, the parameters
of the baseline software are also set to those recommended in the
official codes, the links to which are reported in Supplementary
Table S2.

RESULTS
scBFP helps to conduct improved cell clustering
To evaluate whether data imputed by scBFP can improve cell clus-
tering performance, we conduct experiments with eight widely-
used scRNA-seq datasets [15–21], all of which have gold-standard

cell type information in Figure 2. Details for datasets and base-
lines are available in Supplementary Table S1 and S2, respectively.

Through these experiments, we have the following observa-
tions: (1) scBFP generally shows improved clustering performance
compared to other baseline methods. To statistically verify the
superior performance of scBFP, we conduct a one-sided Wilcoxon
ranked-sum test across all datasets and provide the results in
Supplementary Table S3. The results indicate that scBFP achieves
significantly better clustering performance in terms of ARI, NMI
and CA at the 95% confidence level. (2) Regardless of the com-
plexity of deep-learning-based models, such as DCA, Autoclass,
scGNN and scGCL, they do not generally outperform the other
baselines. This highlights that increased model complexity does
not always guarantee improved performance in the scRNA-seq
domain. (3) On the other hand, MAGIC, which employs a graph-
based diffusion strategy to harness cell–cell relationships, shows
relatively strong performance. This demonstrates that leveraging
relationship information is beneficial in the scRNA-seq analy-
sis. However, it shows lower performance compared to scBFP

because of the limitation that it imputes both zero and non-
zero values simultaneously without considering the influence of
dropout phenomena and does not utilize gene–gene relationships.
(4) Graph-based deep-learning baselines (i.e. scGNN and scGCL)
are not scalable to the Macosko dataset with 44 808 cells. It is due
to the memory constraints caused by the fact that graph-based
methods have to load all cell nodes and corresponding features
(i.e. genes) on GPUs. It is worth noting that scBFP address this
issue by proposing feature-wise batch propagation, leveraging the
independence between features during the propagation step. By
doing so, scBFP effectively addresses the memory issue while still
harnessing the accelerated computational speed of GPU.

In addition, we conduct an in-depth analysis of the Macosko
dataset to evaluate the effectiveness of scBFP in identifying
rare cell types. As shown in Figure 3A, this dataset contains a
severe long-tail distribution [22], with the most minority cell
type, ‘astrocytes’, consisting of only 54 cells, in contrast to the
abundant ‘rods’ type cells, which total 29 400. We visualize the
two-dimensional UMAP [23] of the raw counts and the counts
imputed via scBFP with the macro-F1 score that is a widely-used
metric to evaluate the model’s ability to capture tail cell types in
the imbalanced dataset in Figure 3B, and also report the those of
baselines in Supplementary Figure S1.

Through these results, we note that the majority of cell
types exhibit clear separation based on raw count data alone.
However, minority cell types such as ‘astrocytes’, ‘pericytes’
and ‘microglia’ do not separate effectively, and other baseline
methods also fall short of capturing these minority cell types,
resulting in low macro-F1 performance due to their limited
information content. In contrast, scBFP successfully separates
minority cell types by capturing inherent data relationships.
To further elucidate the ability of scBFP to capture rare cell
types, we visualize the expression levels of well-known marker
genes, namely ‘Gfap’ for astrocytes, ‘Kcnj8’ for pericytes and
‘Cx3cr1’ for microglia, from data before and after imputed by
scBFP in Figure 3C. We also provide this information for the
baseline methods in Supplementary Figure S2. Our findings
reveal that while the expression levels in raw counts and
counts imputed by baselines exhibit relatively high values, they
are challenging to differentiate as they are intermingled with
cells of other types. In contrast, the imputed data by scBFP

effectively captures rare cell types by leveraging marker gene
information, as it shows high expression levels and minimal
overlap with cells belonging to other cell types. Additionally,
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Figure 2. Performance comparisons of scBFP and other baselines on the eight scRNA-seq datasets.

we present violin plots illustrating the expression levels of the
aforementioned marker genes and other widely recognized
marker genes in the data before and after imputation in
Supplementary Figure S3. It also demonstrates that our proposed
approach, scBFP enhances the signal of marker genes. This
enhancement leverages the inherent relationship information
present in the original scRNA-seq data. It capitalizes on a property
that does not rely on the initially sparse and noisy matrix but
rather improves relationships within a ‘warmed-up’ imputed
matrix.

scBFP helps to detect differentially expressed
genes
To further emphasize the ability of scBFP to enhance gene-level
downstream analysis by amplifying data signals, we conduct an
evaluation comparing the impact of scBFP with baseline methods
in the task of detecting differentially expressed genes. In this
comparison, we utilize a dataset containing both bulk and scRNA-
seq data and assess the overlap of DEGs identified using bulk
data and scRNA-seq data, treating the outcomes of bulk data as
‘gold standard’ following the experiments setting on previous
works [7, 24, 25]. Specifically, we conduct experiments using
the Encyclopedia of DNA Elements (ENCODE) samples [26] as
input for bulk data and a combined count matrix incorporating
five Fluidigm-based ENCODE cell lines [27] for scRNA-seq data.
This dataset contains 58 and 362 samples of bulk RNA-seq
and scRNA-seq samples, respectively, with five cell types (i.e.
‘A549’, ‘GM12878’, ‘H1-hESC’, ‘IMR90’ and ‘K562’). A more detailed
description of these data is provided in the Supplementary
Notes 1.2.2.

We utilize the MAST tool [28], a parametric model specifically
designed for single-cell data, to detect differentially expressed
genes (DEGs). This choice is well-suited for our analysis as it can
effectively handle both count and normalized input data. To eval-
uate DEG detection performance, we identify the top 10, 20,... and
100 DEGs from scRNA-seq data and measure their overlap with
DEGs obtained from bulk RNA-seq. The average overlap scores
are computed and serve as our primary performance metric. By

doing this, we report the overlap scores for all pairs of cell types
in Supplementary Figure S4a and present the average of overlap
scores across all cell type pairs in Supplementary Figure S4b.
These results show that the DEG detection outcomes obtained
from the data imputed by scBFP exhibit a higher concordance
with DEGs identified through bulk scRNA-seq when compared to
those obtained using both raw scRNA-seq data and data imputed
by baseline methods. Moreover, it shows robust performance
by consistently outperforming raw data for all ten pairs of cell
types. Based on these observations, we demonstrate that scBFP

enhances the differential gene expression signal by effectively
reducing noise in scRNA-seq data while preserving biological
variability.

scBFP effectively recover dropout values
We assess the capability of scBFP to recover dropout values,
a crucial aspect for imputation methods. To verify the robust-
ness of scBFP against dropout phenomena, we conduct experi-
ments by masking a number of non-zero values to zero and mea-
sure the difference between masked gene expression values and
imputed ones, following the experiments setting of scziDesk [29]
and scGNN [10]. Specifically, we quantify the difference between
the masked and imputed values using commonly employed met-
rics, namely the median L1 distance and root mean squared error
(RMSE), and report them in Figure 4A and Supplementary Figure
S5, respectively. Through these results, we demonstrate that scBFP
has the ability to robustly recover the original values even on
the high dropout rate. Additionally, our experiments confirm the
robustness of scGNN under various dropout rates, verifying the
importance of leveraging intercellular relationship information
for accurate imputation in noisy scenarios. In contrast, the per-
formance of MAGIC and scGCL, both of which are other graph-
based imputation methods, show significant deterioration under
the influence of dropout phenomena. We argue that it is since
while scGNN iteratively updates the graph structure, MAGIC and
scGCL rely on the initial graph derived from raw count data [2].
This observation highlights the crucial role of enhancing graph
structure also utilized in scBFP.
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Figure 3. (A) Distribution of cell types in the Macosko dataset. (B) UMAP visualization comparing raw data and data imputed using the scBFP.
(C) Visualization of marker gene expression in raw data and data imputed using scBFP, with ‘Gfap,’ ‘Kcnj8’ and ‘Cx3cr1’ serving as marker genes
for the ‘astrocytes,’ ‘pericytes’ and ‘microglia’ cell types, respectively.

Moreover, we also report the clustering performance using this
imputed output to ascertain the robustness of scBFP regarding the
challenging dropout phenomena frequently encountered in the
scRNA-seq domain. As shown in Figure 4B, we verify that scBFP

also generally shows superior clustering performance under var-
ious dropout rates compared to other baseline methods across
various dropout rates, as indicated by the ARI. This performance
improvement is attributed to the effective recovery of dropout
values, which reduces noise caused by dropout events and sub-
sequently leads to improved clustering accuracy. Additionally,
scGNN also exhibits high performance, reinforcing the impor-
tance of capturing relationship information with enhanced struc-
tural characteristics. Further results, including additional clus-
tering metrics (NMI and CA), can be found in Supplementary
Figure S6.

scBFP enriches relevant genes in lung cancer data
In the above sections, we demonstrate the effectiveness of scBFP
in the computational perspective. To check whether scBFP can
lead to biologically interpretable insights, we conduct an in-depth
analysis on the single-cell lung carcinoid tumor dataset [30]. To

this end, we conduct an enrichment analysis using both raw data
and data imputed by scBFP and check the difference between
them. Our analysis targets epithelial cells [31] because pulmonary
carcinoid tumors are neuroendocrine epithelial neoplasms.
Specifically, based on absolute fold change ≥ 1.25 and false
discovery rate (FDR) ≤ 0.05 from MAST, 408 and 989 DEGs between
epithelial cells of lung carcinoid tissues and that of normal tissues
are identified from the raw matrix and the data imputed by scBFP,
respectively.

In comparison to the DEGs identified using the raw matrix,
those derived from scBFP show a clear enrichment in cancer-
relevant KEGG pathways [32], as illustrated in Figure 5A,
Supplementary Table S4 and S5, which report the top 10 different
pathways, and all enriched pathways in the DEGs. Additionally,
the ‘PI3K/Akt signaling pathway’, known to be dysregulated in
most cancer types, including lung carcinoids, and plays a role
in promoting tumor cell growth and neuroendocrine hormone
secretion [33, 34], is uniquely enriched. ‘Tumor necrosis factor
(TNF) signaling pathway’ is involved in various metabolisms
as inflammation, and contributes to cancer progression and
metastasis [35, 36]. The ‘MAPK signaling’, which regulates cell
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Figure 4. Performance comparison between scBFP and other baselines across eight scRNA-seq datasets. (A) and (B) Report the dropout recovery and
clustering performance under varying dropout rates, respectively.

proliferation and differentiation, is also one of the representative
cancer-associated pathways [37]. Furthermore, the dynamics of
‘focal adhesion’ and ‘ECM-receptor interaction’ can be altered in
various types of tumors as carcinoids [38, 39].

Moreover, we also perform the Gene Ontology (GO) enrichment
analysis [40, 41] with both raw and data imputed by scBFP and
we report the outcomes on Supplementary Table S6 and S7,
respectively. We observe that the GO terms identified from the
DEGs resulting from scBFP are consistently associated with lung
cancer, demonstrating the biological interpretability of scBFP.
Specifically, The top three enriched terms in DEGs from scBFP

are ‘cytoplasmic translation’ (GO:0002181), ‘negative regulation of
apoptotic process’ (GO:0043066), and ‘regulation of cell popula-
tion proliferation’ (GO:0042127), which are apparently relevant to
tumors which require active metabolism, inhibition of apoptosis,
and rapid mitosis [42–44]. Other terms such as regulation of
‘ERK1 and ERK2 Cascade’ (GO:0070372) and ‘regulation of MAPK
cascade’ (GO:0043408) are reported to be dysregulated by genomic
mutations in lung carcinoid tumors [45]. To further ensure consis-
tency of key expression patterns, we compare expression values

of four markers of lung carcinoid tumors: NCAM1 (CD35), INSM1,
SYP (synaptophysin), and OTP (orthopedia homeobox protein)
[46–49]. As depicted in Figure 5(B), the raw data from tumors have
a notable amount of missing values (NCAM1: 50%, INSM1: 53%,
SYP: 48%, OTP: 30%). scBFP can successfully impute these kinds
of data, discriminating the values of normal tissues and tumors.
scBFP replaces zeros of raw expression from normal tissues, which
are the majority, properly. It is important to note that while
classifying and accurately imputing false zeros in normal tissues
presents a significant challenge, scBFP effectively imputes such
zeros, thereby aiding in differential gene expression analysis.

scBFP is suitable for high-throughput scRNA-seq
data
Given the recent progress in next-generation sequencing tech-
nologies, the capacity for scalability in handling high-throughput
data is crucial. To evaluate the scalability of scBFP with different
cell counts, we generated data ranging from 5K to 100K cells,
while maintaining a constant number of 10 000 genes, using the
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Figure 5. Differential gene analysis between lung carcinoid tumors normal lung tissues. (A) Uniquely enriched KEGG pathways from the data imputed
by scBFP, compared to that from raw values. The top 10 pathways are displayed, ordered by their adjusted P-values. (B) Expression-level of scBFP with
four markers for lung carcinoid: ‘NCAM1’, ‘INSM1’, ‘SYP’ and ‘OTP’.

SymSim library [50]. Figure 6 illustrates that the running time of
scBFP does not increase exponentially with the number of cells,
demonstrating its scalability up to 100k cells. This is attributed
to its feature-wise batch training approach, in which the number
of genes involved in feature propagation and the number of cells
involved in diffusion are determined by the batch size. This is
due to the independence of feature channels from the cell and
gene perspectives, respectively. In contrast, other graph-based
deep-learning methods, such as scGNN and scGCL, are unable to
process data with more than 20k to 30k cells due to memory lim-
itations while computing matrix multiplication between feature
matrix and adjacency matrix. More details regarding the memory
complexity of the baselines can be found in Supplementary Table
S8. These findings confirm that scBFP is capable of handling large-
scale scRNA-seq datasets, demonstrating its practical applicabil-
ity in real-world scenarios.

CONCLUSION AND DISCUSSION
In this study, we present scBFP, a novel method designed to
impute the dropout phenomenon in scRNA-seq data while
simultaneously addressing downstream tasks. Our approach
begins with the gene–cell matrix, imputing zero values from a
gene-wise perspective before diffusing both zero and non-zero
values through a ‘warmed-up’ matrix in a sequential manner.
This bi-level consideration of gene and cell perspectives enables
scBFP to effectively recover dropout events, enriching relevant
genes and enhancing performance in downstream tasks such
as clustering and identifying differentially expressed genes at
both cell and gene levels. Additionally, scBFP’s scalability and
straightforward implementation hold promise for broader appli-
cability in areas where sparsity is a challenge, such as single-cell
Assay for Transposase-Accessible Chromatin using sequencing

(scATAC-seq), as demonstrated in Supplementary Figure S7.
Moreover, comprehensive ablation studies regarding the two-step
approach, diffusion strategies, graph structure and warm-up step
of scBFP are provided in Supplementary Notes 1.5.

Moreover, an important consideration that warrants discussion
is the treatment of biological zeros, i.e. true zeros. In our method-
ology, zeros are treated as dropout events requiring imputation.
Yet, in reality, biological zeros do exist, and their impact is signifi-
cant, as noted by [51]. To assess the impact of true zeros, we con-
ducted experiments using a simulation dataset generated by Sym-
sim [50], which allows manual control and analysis of true zeros.
First, our analysis delves into how our method achieves favorable
outcomes without distinguishing between true and false zeros.
Notably, our comparison of the imputed values at true and false
zero indices across varying dropout rates in Supplementary Fig-
ure S8a reveals that true zeros tend to have smaller imputed
values than false zeros. This aligns with the ultimate objective
of scRNA-seq imputation: to accurately recover values at false
zero indices. This pattern is attributable to the underlying graph
structure and diffusion process, where neighboring values of
true zeros are smaller than those of false zeros, leading to a
pronounced disparity in final imputed values (Supplementary
Figure S8b).

Additionally, to verify the impact of true zeros on relevant
downstream tasks, we conducted a cell clustering task on both
a simulated dataset from Sysmsim and a real dataset. For the
real dataset, direct access to true zeros is not feasible, so we
approximated the indices of true zeros using the state-of-the-
art method, ALRA and illustrated its results in Supplementary
Figure S9. We compared scBFP with its variants, specifically
focusing on the retention of true zeros as zeros from the initial
matrix (input for gene-wise feature propagation) and from the
‘warmed-up’ matrix (input for cell-wise diffusion). Intriguingly,
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Figure 6. Running time comparison of scBFP and baselines across various number of cells with 10 000 genes.

scBFP showed enhanced harmony with the retention of true zeros
in the ‘warmed-up’ matrix rather than in the initial matrix. This
suggests that during gene-wise feature propagation, facilitating
message-passing among zero values is advantageous compared
to a one-way message reception from non-zero values. However,
when true zeros are retained through ALRA approximation, scBFP
did not align as effectively in both simulated and real datasets
compared to scenarios with ground truth in simulation, exhibiting
similar or marginally lower performance than the original
approach. This suggests that the challenge lies in accurately
approximating true zeros using ALRA, highlighting a potential
area for refinement in real dataset applications. In summary,
the incorporation of true zeros presents a notable challenge
in real datasets as opposed to simulated ones. Our results
indicate that preserving true zeros through the diffusion process
does not markedly enhance performance, particularly when
considering the added computational burden. Thus, treating
zeros as imputation indices in our current approach seems both
practical and beneficial under these conditions.

Key Points

• We present a novel framework that imputes scRNA-
seq data mitigating the risk of propagating false zero
values and effectively utilizes both gene–gene and cell–
cell relationships.

• Our extensive experiments show that scBFP consistently
achieved better performance on various downstream
tasks compared to the state-of-the-art models.

• Case on Macosko data shows that scBFP assists in iden-
tifying rare cell types.

• In the case of lung cancer scRNA-seq data, scBFP can
assist in extracting biologically meaningful insights by
enriching relevant genes, showcasing its potential appli-
cability.

• scBFP exhibits scalability, making it well-suited for pro-
cessing high-throughput scRNA-seq data.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxford
journals.org/.
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DATA AVAILABILITY
All datasets used in this study are publicly available. Specifically,
we obtained the following datasets from the Gene Expression
Omnibus (GEO) database: GSE84133 (the Baron data), GSE65525
(the Klein data), GSE60361 (the Zeisel data), GSE63473 (the
Macosko data), GSE81861 (the Encode cell lines), GSE196303
(the lung carcinoid tumors), GSE100033 (the forebrain data)
and GSE65360 (the insilico data). Additionally, we obtained
other datasets from links provided by the respective authors.
The pancreas dataset can be accessed at https://ndownloader.
figshare.com/files/36086813, the mouse bladder dataset at
https://figshare.com/s/865e694ad06d5857db4b and the worm
neuron cells dataset at http://waterston.gs.washington.edu/
sci_RNA_seq_gene_count_data/Cao_et_al_2017_vignette.RData.
Symsim dataset can be publicly accessed through https://github.
com/YosefLab/SymSim. We used the recommended setting for
UMI parameters (α = 0.04, MaxAmpBias = 0.1, Depth = 5e5)
and manually set σ = 0.8 to control the heterogeneity across
populations and minpopsize=10, across a total of five cell types
while generating datasets comprising 3000 cells and 2000 genes.

CODE AVAILABILITY
An implementation of scBFP is publicly available at https://github.
com/Junseok0207/scBFP.
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